gd32f30x_spi.c 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
/*!
    \file    gd32f30x_spi.c
    \brief   SPI driver

    \version 2017-02-10, V1.0.0, firmware for GD32F30x
    \version 2018-10-10, V1.1.0, firmware for GD32F30x
    \version 2018-12-25, V2.0.0, firmware for GD32F30x
    \version 2020-09-30, V2.1.0, firmware for GD32F30x
*/

/*
    Copyright (c) 2020, GigaDevice Semiconductor Inc.

    Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met:

    1. Redistributions of source code must retain the above copyright notice, this 
       list of conditions and the following disclaimer.
    2. Redistributions in binary form must reproduce the above copyright notice, 
       this list of conditions and the following disclaimer in the documentation 
       and/or other materials provided with the distribution.
    3. Neither the name of the copyright holder nor the names of its contributors 
       may be used to endorse or promote products derived from this software without 
       specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE.
*/

#include "gd32f30x_spi.h"

#define SPI_ERROR_HANDLE(s)           do{}while(1)

/* SPI/I2S parameter initialization mask */
#define SPI_INIT_MASK                   ((uint32_t)0x00003040U)  /*!< SPI parameter initialization mask */
#define I2S_INIT_MASK                   ((uint32_t)0x0000F047U)  /*!< I2S parameter initialization mask */

/* default value */
#define SPI_I2SPSC_DEFAULT_VALUE        ((uint32_t)0x00000002U)  /*!< default value of SPI_I2SPSC register */

/* I2S clock source selection, multiplication and division mask */
#define I2S1_CLOCK_SEL                  ((uint32_t)0x00020000U)  /*!< I2S1 clock source selection */
#define I2S2_CLOCK_SEL                  ((uint32_t)0x00040000U)  /*!< I2S2 clock source selection */
#define I2S_CLOCK_MUL_MASK              ((uint32_t)0x0000F000U)  /*!< I2S clock multiplication mask */
#define I2S_CLOCK_DIV_MASK              ((uint32_t)0x000000F0U)  /*!< I2S clock division mask */

/*!
    \brief      reset SPI and I2S 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
    switch(spi_periph){
    case SPI0:
        /* reset SPI0 */
        rcu_periph_reset_enable(RCU_SPI0RST);
        rcu_periph_reset_disable(RCU_SPI0RST);
        break;
    case SPI1:
        /* reset SPI1 and I2S1 */
        rcu_periph_reset_enable(RCU_SPI1RST);
        rcu_periph_reset_disable(RCU_SPI1RST);
        break;
    case SPI2:
        /* reset SPI2 and I2S2 */
        rcu_periph_reset_enable(RCU_SPI2RST);
        rcu_periph_reset_disable(RCU_SPI2RST);
        break;
    default :
        break;
    }
}

/*!
    \brief      initialize the parameters of SPI struct with default values
    \param[in]  none
    \param[out] spi_parameter_struct: the initialized struct spi_parameter_struct pointer
    \retval     none
*/
void spi_struct_para_init(spi_parameter_struct *spi_struct)
{
    /* configure the structure with default value */
    spi_struct->device_mode          = SPI_SLAVE;
    spi_struct->trans_mode           = SPI_TRANSMODE_FULLDUPLEX;
    spi_struct->frame_size           = SPI_FRAMESIZE_8BIT;
    spi_struct->nss                  = SPI_NSS_HARD;
    spi_struct->clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE;
    spi_struct->prescale             = SPI_PSC_2;
    spi_struct->endian               = SPI_ENDIAN_MSB;
}

/*!
    \brief      initialize SPI parameter
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  spi_struct: SPI parameter initialization stuct members of the structure 
                            and the member values are shown as below:
                  device_mode: SPI_MASTER, SPI_SLAVE
                  trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
                              SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
                  frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
                  nss: SPI_NSS_SOFT, SPI_NSS_HARD
                  endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
                  clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
                                        SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
                  prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256)
    \param[out] none
    \retval     none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{   
    uint32_t reg = 0U;
    reg = SPI_CTL0(spi_periph);
    reg &= SPI_INIT_MASK;

    /* select SPI as master or slave */
    reg |= spi_struct->device_mode;
    /* select SPI transfer mode */
    reg |= spi_struct->trans_mode;
    /* select SPI frame size */
    reg |= spi_struct->frame_size;
    /* select SPI NSS use hardware or software */
    reg |= spi_struct->nss;
    /* select SPI LSB or MSB */
    reg |= spi_struct->endian;
    /* select SPI polarity and phase */
    reg |= spi_struct->clock_polarity_phase;
    /* select SPI prescale to adjust transmit speed */
    reg |= spi_struct->prescale;

    /* write to SPI_CTL0 register */
    SPI_CTL0(spi_periph) = (uint32_t)reg;

    SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}

/*!
    \brief      enable SPI
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_enable(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}

/*!
    \brief      disable SPI 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_disable(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}

/*!
    \brief      initialize I2S parameter 
    \param[in]  spi_periph: SPIx(x=1,2)
    \param[in]  i2s_mode: I2S operation mode
                only one parameter can be selected which is shown as below:
      \arg        I2S_MODE_SLAVETX: I2S slave transmit mode
      \arg        I2S_MODE_SLAVERX: I2S slave receive mode
      \arg        I2S_MODE_MASTERTX: I2S master transmit mode
      \arg        I2S_MODE_MASTERRX: I2S master receive mode
    \param[in]  i2s_standard: I2S standard
                only one parameter can be selected which is shown as below:
      \arg        I2S_STD_PHILLIPS: I2S phillips standard
      \arg        I2S_STD_MSB: I2S MSB standard
      \arg        I2S_STD_LSB: I2S LSB standard
      \arg        I2S_STD_PCMSHORT: I2S PCM short standard
      \arg        I2S_STD_PCMLONG: I2S PCM long standard
    \param[in]  i2s_ckpl: I2S idle state clock polarity
                only one parameter can be selected which is shown as below:
      \arg        I2S_CKPL_LOW: I2S clock polarity low level
      \arg        I2S_CKPL_HIGH: I2S clock polarity high level
    \param[out] none
    \retval     none
*/
void i2s_init(uint32_t spi_periph, uint32_t i2s_mode, uint32_t i2s_standard, uint32_t i2s_ckpl)
{
    uint32_t reg= 0U;
    reg = SPI_I2SCTL(spi_periph);
    reg &= I2S_INIT_MASK;

    /* enable I2S mode */
    reg |= (uint32_t)SPI_I2SCTL_I2SSEL; 
    /* select I2S mode */
    reg |= (uint32_t)i2s_mode;
    /* select I2S standard */
    reg |= (uint32_t)i2s_standard;
    /* select I2S polarity */
    reg |= (uint32_t)i2s_ckpl;

    /* write to SPI_I2SCTL register */
    SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}

/*!
    \brief      configure I2S prescaler 
    \param[in]  spi_periph: SPIx(x=1,2)
    \param[in]  i2s_audiosample: I2S audio sample rate
                only one parameter can be selected which is shown as below:
      \arg        I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz
      \arg        I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz
      \arg        I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz
      \arg        I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz
      \arg        I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz
      \arg        I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz
      \arg        I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz
      \arg        I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz
      \arg        I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz
    \param[in]  i2s_frameformat: I2S data length and channel length
                only one parameter can be selected which is shown as below:
      \arg        I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
      \arg        I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
    \param[in]  i2s_mckout: I2S master clock output
                only one parameter can be selected which is shown as below:
      \arg        I2S_MCKOUT_ENABLE: I2S master clock output enable
      \arg        I2S_MCKOUT_DISABLE: I2S master clock output disable
    \param[out] none
    \retval     none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t i2s_audiosample, uint32_t i2s_frameformat, uint32_t i2s_mckout)
{
    uint32_t i2sdiv = 2U, i2sof = 0U;
    uint32_t clks = 0U;
    uint32_t i2sclock = 0U;
    
#ifdef GD32F30X_CL
    uint32_t pll2mf_4 = 0U;
#endif /* GD32F30X_CL */
    
     /* judge whether the audiosample is 0 */
    if(0U == i2s_audiosample){
        SPI_ERROR_HANDLE("the parameter can not be 0 \r\n");
    }
    /* deinit SPI_I2SPSC register */
    SPI_I2SPSC(spi_periph) = SPI_I2SPSC_DEFAULT_VALUE;

#ifdef GD32F30X_CL
    /* get the I2S clock source */
    if(((uint32_t)spi_periph) == SPI1){
        /* I2S1 clock source selection */
        clks = I2S1_CLOCK_SEL;
    }else{
        /* I2S2 clock source selection */
        clks = I2S2_CLOCK_SEL;
    }
    
    if(0U != (RCU_CFG1 & clks)){
        /* get RCU PLL2 clock multiplication factor */
        clks = (uint32_t)((RCU_CFG1 & I2S_CLOCK_MUL_MASK) >> 12U);
        
        pll2mf_4 = RCU_CFG1 & RCU_CFG1_PLL2MF_4;
        
        if( 0U == pll2mf_4){
            if((clks > 5U) && (clks < 15U)){
                /* multiplier is between 8 and 16 */
                clks += 2U;
            }else{
                if(15U == clks){
                    /* multiplier is 20 */
                    clks = 20U;
                }
            }
        }else{
            if(clks < 15U){
                /* multiplier is between 18 and 32 */
                clks += 18U;
            }else{
                if(15U == clks){
                    /* multiplier is 40 */
                    clks = 40U;
                }
            }
        }

        /* get the PREDV1 value */
        i2sclock = (uint32_t)(((RCU_CFG1 & I2S_CLOCK_DIV_MASK) >> 4U) + 1U);
        /* calculate i2sclock based on PLL2 and PREDV1 */
        i2sclock = (uint32_t)((HXTAL_VALUE / i2sclock) * clks * 2U); 
    }else{
        /* get system clock */
        i2sclock = rcu_clock_freq_get(CK_SYS);
    }
#else
    /* get system clock */
    i2sclock = rcu_clock_freq_get(CK_SYS);
#endif /* GD32F30X_CL */ 
    
    /* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
    if(I2S_MCKOUT_ENABLE == i2s_mckout){
        clks = (uint32_t)(((i2sclock / 256U) * 10U) / i2s_audiosample);
    }else{
        if(I2S_FRAMEFORMAT_DT16B_CH16B == i2s_frameformat){
            clks = (uint32_t)(((i2sclock / 32U) *10U ) / i2s_audiosample);
        }else{
            clks = (uint32_t)(((i2sclock / 64U) *10U ) / i2s_audiosample);
        }
    }
    
    /* remove the floating point */
    clks   = (clks + 5U) / 10U;
    i2sof  = (clks & 0x00000001U);
    i2sdiv = ((clks - i2sof) / 2U);
    i2sof  = (i2sof << 8U);

    /* set the default values */
    if((i2sdiv < 2U) || (i2sdiv > 255U)){
        i2sdiv = 2U;
        i2sof = 0U;
    }

    /* configure SPI_I2SPSC */
    SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | i2s_mckout);

    /* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
    SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN | SPI_I2SCTL_CHLEN));
    /* configure data frame format */
    SPI_I2SCTL(spi_periph) |= (uint32_t)i2s_frameformat;
}

/*!
    \brief      enable I2S 
    \param[in]  spi_periph: SPIx(x=1,2)
    \param[out] none
    \retval     none
*/
void i2s_enable(uint32_t spi_periph)
{
    SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}

/*!
    \brief      disable I2S 
    \param[in]  spi_periph: SPIx(x=1,2)
    \param[out] none
    \retval     none
*/
void i2s_disable(uint32_t spi_periph)
{
    SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}

/*!
    \brief      enable SPI NSS output 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}

/*!
    \brief      disable SPI NSS output 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}

/*!
    \brief      SPI NSS pin high level in software mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}

/*!
    \brief      SPI NSS pin low level in software mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}

/*!
    \brief      enable SPI DMA send or receive 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  dma: SPI DMA mode
                only one parameter can be selected which is shown as below:
      \arg        SPI_DMA_TRANSMIT: SPI transmit data use DMA
      \arg        SPI_DMA_RECEIVE: SPI receive data use DMA
    \param[out] none
    \retval     none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t dma)
{
    if(SPI_DMA_TRANSMIT == dma){
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
    }else{
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
    }
}

/*!
    \brief      disable SPI DMA send or receive 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  dma: SPI DMA mode
                only one parameter can be selected which is shown as below:
      \arg        SPI_DMA_TRANSMIT: SPI transmit data use DMA
      \arg        SPI_DMA_RECEIVE: SPI receive data use DMA
    \param[out] none
    \retval     none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t dma)
{
    if(SPI_DMA_TRANSMIT == dma){
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
    }else{
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
    }
}

/*!
    \brief      configure SPI/I2S data frame format
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  frame_format: SPI frame size
                only one parameter can be selected which is shown as below:
      \arg        SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
      \arg        SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
    \param[out] none
    \retval     none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
    /* clear SPI_CTL0_FF16 bit */
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
    /* confige SPI_CTL0_FF16 bit */
    SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}

/*!
    \brief      SPI transmit data
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  data: 16-bit data
    \param[out] none
    \retval     none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
    SPI_DATA(spi_periph) = (uint32_t)data;
}

/*!
    \brief      SPI receive data
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
    return ((uint16_t)SPI_DATA(spi_periph));
}

/*!
    \brief      configure SPI bidirectional transfer direction
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  transfer_direction: SPI transfer direction
                only one parameter can be selected which is shown as below:
      \arg        SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode
      \arg        SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
    \retval     none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
    if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){
        /* set the transmit only mode */
        SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT;
    }else{
        /* set the receive only mode */
        SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
    }
}

/*!
    \brief      set SPI CRC polynomial 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  crc_poly: CRC polynomial value
    \param[out] none
    \retval     none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
    /* set SPI CRC polynomial */
    SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}

/*!
    \brief      get SPI CRC polynomial 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
    return ((uint16_t)SPI_CRCPOLY(spi_periph));
}

/*
    \brief      turn on CRC function 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_crc_on(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}

/*!
    \brief      turn off CRC function 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_crc_off(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}

/*!
    \brief      SPI next data is CRC value
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_crc_next(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}

/*!
    \brief      get SPI CRC send value or receive value
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  crc: SPI crc value
                only one parameter can be selected which is shown as below:
      \arg        SPI_CRC_TX: get transmit crc value
      \arg        SPI_CRC_RX: get receive crc value
    \param[out] none
    \retval     16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t crc)
{
    if(SPI_CRC_TX == crc){
        return ((uint16_t)(SPI_TCRC(spi_periph)));
    }else{
        return ((uint16_t)(SPI_RCRC(spi_periph)));
    }
}

/*!
    \brief      enable SPI TI mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}

/*!
    \brief      disable SPI TI mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}

/*!
    \brief      enable SPI NSS pulse mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nssp_mode_enable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSP;
}

/*!
    \brief      disable SPI NSS pulse mode
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_nssp_mode_disable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSP);
}

/*!
    \brief      enable quad wire SPI
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
void spi_quad_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}

/*!
    \brief      disable quad wire SPI 
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
void spi_quad_disable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}

/*!
    \brief      enable quad wire SPI write 
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
void spi_quad_write_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}

/*!
    \brief      enable quad wire SPI read 
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
void spi_quad_read_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}

/*!
    \brief      enable SPI_IO2 and SPI_IO3 pin output 
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
void spi_quad_io23_output_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}

 /*!
    \brief      disable SPI_IO2 and SPI_IO3 pin output 
    \param[in]  spi_periph: SPIx(only x=0)
    \param[out] none
    \retval     none
*/
 void spi_quad_io23_output_disable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}

/*!
    \brief      enable SPI and I2S interrupt 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  interrupt: SPI/I2S interrupt
                only one parameter can be selected which is shown as below:
      \arg        SPI_I2S_INT_TBE: transmit buffer empty interrupt
      \arg        SPI_I2S_INT_RBNE: receive buffer not empty interrupt
      \arg        SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
                                   transmission underrun error and format error interrupt
    \param[out] none
    \retval     none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt)
{
    switch(interrupt){
    /* SPI/I2S transmit buffer empty interrupt */
    case SPI_I2S_INT_TBE:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
        break;
    /* SPI/I2S receive buffer not empty interrupt */
    case SPI_I2S_INT_RBNE:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
        break;
    /* SPI/I2S error */
    case SPI_I2S_INT_ERR:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
        break;
    default:
        break;
    }
}

/*!
    \brief      disable SPI and I2S interrupt 
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  interrupt: SPI/I2S interrupt
                only one parameter can be selected which is shown as below:
      \arg        SPI_I2S_INT_TBE: transmit buffer empty interrupt
      \arg        SPI_I2S_INT_RBNE: receive buffer not empty interrupt
      \arg        SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
                                   transmission underrun error and format error interrupt
    \param[out] none
    \retval     none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt)
{
    switch(interrupt){
    /* SPI/I2S transmit buffer empty interrupt */
    case SPI_I2S_INT_TBE:
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
        break;
    /* SPI/I2S receive buffer not empty interrupt */
    case SPI_I2S_INT_RBNE:
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
        break;
    /* SPI/I2S error */
    case SPI_I2S_INT_ERR:
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
        break;
    default :
        break;
    }
}

/*!
    \brief      get SPI and I2S interrupt flag status
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  interrupt: SPI/I2S interrupt flag status
                only one parameter can be selected which is shown as below:
      \arg        SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag
      \arg        SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag
      \arg        SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag
      \arg        SPI_INT_FLAG_CONFERR: config error interrupt flag
      \arg        SPI_INT_FLAG_CRCERR: CRC error interrupt flag
      \arg        I2S_INT_FLAG_TXURERR: underrun error interrupt flag
      \arg        SPI_I2S_INT_FLAG_FERR: format error interrupt flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt)
{
    uint32_t reg1 = SPI_STAT(spi_periph);
    uint32_t reg2 = SPI_CTL1(spi_periph);

    switch(interrupt){
    /* SPI/I2S transmit buffer empty interrupt */
    case SPI_I2S_INT_FLAG_TBE:
        reg1 = reg1 & SPI_STAT_TBE;
        reg2 = reg2 & SPI_CTL1_TBEIE;
        break;
    /* SPI/I2S receive buffer not empty interrupt */
    case SPI_I2S_INT_FLAG_RBNE:
        reg1 = reg1 & SPI_STAT_RBNE;
        reg2 = reg2 & SPI_CTL1_RBNEIE;
        break;
    /* SPI/I2S overrun interrupt */
    case SPI_I2S_INT_FLAG_RXORERR:
        reg1 = reg1 & SPI_STAT_RXORERR;
        reg2 = reg2 & SPI_CTL1_ERRIE;
        break;
    /* SPI config error interrupt */
    case SPI_INT_FLAG_CONFERR:
        reg1 = reg1 & SPI_STAT_CONFERR;
        reg2 = reg2 & SPI_CTL1_ERRIE;
        break;
    /* SPI CRC error interrupt */
    case SPI_INT_FLAG_CRCERR:
        reg1 = reg1 & SPI_STAT_CRCERR;
        reg2 = reg2 & SPI_CTL1_ERRIE;
        break;
    /* I2S underrun error interrupt */
    case I2S_INT_FLAG_TXURERR:
        reg1 = reg1 & SPI_STAT_TXURERR;
        reg2 = reg2 & SPI_CTL1_ERRIE;
        break;
    /* SPI/I2S format error interrupt */
    case SPI_I2S_INT_FLAG_FERR:
        reg1 = reg1 & SPI_STAT_FERR;
        reg2 = reg2 & SPI_CTL1_ERRIE;
        break;
    default :
        break;
    }
    /*get SPI/I2S interrupt flag status */
    if(reg1 && reg2){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      get SPI and I2S flag status
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[in]  flag: SPI/I2S flag status
                only one parameter can be selected which is shown as below:
      \arg        SPI_FLAG_TBE: transmit buffer empty flag
      \arg        SPI_FLAG_RBNE: receive buffer not empty flag
      \arg        SPI_FLAG_TRANS: transmit on-going flag
      \arg        SPI_FLAG_RXORERR: receive overrun error flag
      \arg        SPI_FLAG_CONFERR: mode config error flag
      \arg        SPI_FLAG_CRCERR: CRC error flag
      \arg        SPI_FLAG_FERR: format error flag
      \arg        I2S_FLAG_TBE: transmit buffer empty flag
      \arg        I2S_FLAG_RBNE: receive buffer not empty flag
      \arg        I2S_FLAG_TRANS: transmit on-going flag
      \arg        I2S_FLAG_RXORERR: overrun error flag
      \arg        I2S_FLAG_TXURERR: underrun error flag
      \arg        I2S_FLAG_CH: channel side flag
      \arg        I2S_FLAG_FERR: format error flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag)
{
    if(SPI_STAT(spi_periph) & flag){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      clear SPI CRC error flag status
    \param[in]  spi_periph: SPIx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
    SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}