gd32f30x_can.c 40.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/*!
    \file    gd32f30x_can.c
    \brief   CAN driver

    \version 2017-02-10, V1.0.0, firmware for GD32F30x
    \version 2018-10-10, V1.1.0, firmware for GD32F30x
    \version 2018-12-25, V2.0.0, firmware for GD32F30x
    \version 2019-11-27, V2.0.1, firmware for GD32F30x
    \version 2020-03-02, V2.0.2, firmware for GD32F30x
    \version 2020-07-14, V2.0.3, firmware for GD32F30x
    \version 2020-09-30, V2.1.0, firmware for GD32F30x
*/

/*
    Copyright (c) 2020, GigaDevice Semiconductor Inc.

    Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met:

    1. Redistributions of source code must retain the above copyright notice, this 
       list of conditions and the following disclaimer.
    2. Redistributions in binary form must reproduce the above copyright notice, 
       this list of conditions and the following disclaimer in the documentation 
       and/or other materials provided with the distribution.
    3. Neither the name of the copyright holder nor the names of its contributors 
       may be used to endorse or promote products derived from this software without 
       specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE.
*/

#include "gd32f30x_can.h"
#include <stdlib.h>

#define CAN_ERROR_HANDLE(s)     do{}while(1)

/*!
    \brief      deinitialize CAN 
    \param[in]  can_periph
    \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     none
*/
void can_deinit(uint32_t can_periph)
{
#ifdef GD32F30X_CL
    if(CAN0 == can_periph){
        rcu_periph_reset_enable(RCU_CAN0RST);
        rcu_periph_reset_disable(RCU_CAN0RST);
    }else{
        rcu_periph_reset_enable(RCU_CAN1RST);
        rcu_periph_reset_disable(RCU_CAN1RST);
    }
#else
    if(CAN0 == can_periph){
        rcu_periph_reset_enable(RCU_CAN0RST);
        rcu_periph_reset_disable(RCU_CAN0RST);
    }
#endif
}

/*!
    \brief      initialize CAN parameter struct with a default value
    \param[in]  type: the type of CAN parameter struct  
                only one parameter can be selected which is shown as below:
      \arg        CAN_INIT_STRUCT: the CAN initial struct
      \arg        CAN_FILTER_STRUCT: the CAN filter struct
      \arg        CAN_TX_MESSAGE_STRUCT: the CAN TX message struct
      \arg        CAN_RX_MESSAGE_STRUCT: the CAN RX message struct
    \param[in]  p_struct: the pointer of the specific struct 
    \param[out] none
    \retval     none
*/
void can_struct_para_init(can_struct_type_enum type, void* p_struct)
{
    uint8_t i;
    
    if(NULL == p_struct){
        CAN_ERROR_HANDLE("struct parameter can not be NULL \r\n");
    }
    
    /* get type of the struct */
    switch(type){
        /* used for can_init() */
        case CAN_INIT_STRUCT:
            ((can_parameter_struct*)p_struct)->auto_bus_off_recovery = DISABLE;
            ((can_parameter_struct*)p_struct)->no_auto_retrans = DISABLE;
            ((can_parameter_struct*)p_struct)->auto_wake_up = DISABLE;
            ((can_parameter_struct*)p_struct)->prescaler = 0x03FFU; 
            ((can_parameter_struct*)p_struct)->rec_fifo_overwrite = DISABLE; 
            ((can_parameter_struct*)p_struct)->resync_jump_width = CAN_BT_SJW_1TQ;
            ((can_parameter_struct*)p_struct)->time_segment_1 = CAN_BT_BS1_3TQ;
            ((can_parameter_struct*)p_struct)->time_segment_2 = CAN_BT_BS2_1TQ;
            ((can_parameter_struct*)p_struct)->time_triggered = DISABLE;
            ((can_parameter_struct*)p_struct)->trans_fifo_order = DISABLE;
            ((can_parameter_struct*)p_struct)->working_mode = CAN_NORMAL_MODE;
            
            break;
        /* used for can_filter_init() */
        case CAN_FILTER_STRUCT:
            ((can_filter_parameter_struct*)p_struct)->filter_bits = CAN_FILTERBITS_32BIT;
            ((can_filter_parameter_struct*)p_struct)->filter_enable = DISABLE;
            ((can_filter_parameter_struct*)p_struct)->filter_fifo_number = CAN_FIFO0;
            ((can_filter_parameter_struct*)p_struct)->filter_list_high = 0x0000U;
            ((can_filter_parameter_struct*)p_struct)->filter_list_low = 0x0000U;
            ((can_filter_parameter_struct*)p_struct)->filter_mask_high = 0x0000U;
            ((can_filter_parameter_struct*)p_struct)->filter_mask_low = 0x0000U;
            ((can_filter_parameter_struct*)p_struct)->filter_mode = CAN_FILTERMODE_MASK;
            ((can_filter_parameter_struct*)p_struct)->filter_number = 0U;

            break;
        /* used for can_message_transmit() */
        case CAN_TX_MESSAGE_STRUCT:
            for(i = 0U; i < 8U; i++){
                ((can_trasnmit_message_struct*)p_struct)->tx_data[i] = 0U;
            }
            
            ((can_trasnmit_message_struct*)p_struct)->tx_dlen = 0u;
            ((can_trasnmit_message_struct*)p_struct)->tx_efid = 0U;
            ((can_trasnmit_message_struct*)p_struct)->tx_ff = (uint8_t)CAN_FF_STANDARD;
            ((can_trasnmit_message_struct*)p_struct)->tx_ft = (uint8_t)CAN_FT_DATA;
            ((can_trasnmit_message_struct*)p_struct)->tx_sfid = 0U;
            
            break;
        /* used for can_message_receive() */
        case CAN_RX_MESSAGE_STRUCT:
            for(i = 0U; i < 8U; i++){
                ((can_receive_message_struct*)p_struct)->rx_data[i] = 0U;
            }
            
            ((can_receive_message_struct*)p_struct)->rx_dlen = 0U;
            ((can_receive_message_struct*)p_struct)->rx_efid = 0U;
            ((can_receive_message_struct*)p_struct)->rx_ff = (uint8_t)CAN_FF_STANDARD;
            ((can_receive_message_struct*)p_struct)->rx_fi = 0U;
            ((can_receive_message_struct*)p_struct)->rx_ft = (uint8_t)CAN_FT_DATA;
            ((can_receive_message_struct*)p_struct)->rx_sfid = 0U;
            
            break;

        default:
            CAN_ERROR_HANDLE("parameter is invalid \r\n");
    }
}

/*!
    \brief      initialize CAN
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  can_parameter_init: parameters for CAN initializtion
      \arg        working_mode: CAN_NORMAL_MODE, CAN_LOOPBACK_MODE, CAN_SILENT_MODE, CAN_SILENT_LOOPBACK_MODE
      \arg        resync_jump_width: CAN_BT_SJW_xTQ(x=1, 2, 3, 4)
      \arg        time_segment_1: CAN_BT_BS1_xTQ(1..16)
      \arg        time_segment_2: CAN_BT_BS2_xTQ(1..8)
      \arg        time_triggered: ENABLE or DISABLE
      \arg        auto_bus_off_recovery: ENABLE or DISABLE
      \arg        auto_wake_up: ENABLE or DISABLE
      \arg        no_auto_retrans: ENABLE or DISABLE
      \arg        rec_fifo_overwrite: ENABLE or DISABLE
      \arg        trans_fifo_order: ENABLE or DISABLE
      \arg        prescaler: 0x0001 - 0x0400
    \param[out] none
    \retval     ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init)
{
    uint32_t timeout = CAN_TIMEOUT;
    ErrStatus flag = ERROR;
    
    /* disable sleep mode */
    CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
    /* enable initialize mode */
    CAN_CTL(can_periph) |= CAN_CTL_IWMOD;
    /* wait ACK */
    while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
        timeout--;
    }
    /* check initialize working success */
    if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
        flag = ERROR;
    }else{
        /* set the bit timing register */
        CAN_BT(can_periph) = (BT_MODE((uint32_t)can_parameter_init->working_mode) | \
                              BT_SJW((uint32_t)can_parameter_init->resync_jump_width) | \
                              BT_BS1((uint32_t)can_parameter_init->time_segment_1) | \
                              BT_BS2((uint32_t)can_parameter_init->time_segment_2) | \
                              BT_BAUDPSC(((uint32_t)(can_parameter_init->prescaler) - 1U)));

        /* time trigger communication mode */
        if(ENABLE == can_parameter_init->time_triggered){
            CAN_CTL(can_periph) |= CAN_CTL_TTC;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
        }
        /* automatic bus-off managment */
        if(ENABLE == can_parameter_init->auto_bus_off_recovery){
            CAN_CTL(can_periph) |= CAN_CTL_ABOR;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_ABOR;
        }
        /* automatic wakeup mode */
        if(ENABLE == can_parameter_init->auto_wake_up){
            CAN_CTL(can_periph) |= CAN_CTL_AWU;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_AWU;
        }
        /* automatic retransmission mode disable */
        if(ENABLE == can_parameter_init->no_auto_retrans){
            CAN_CTL(can_periph) |= CAN_CTL_ARD;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_ARD;
        }
        /* receive fifo overwrite mode */        
        if(ENABLE == can_parameter_init->rec_fifo_overwrite){
            CAN_CTL(can_periph) |= CAN_CTL_RFOD;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_RFOD;
        } 
        /* transmit fifo order */
        if(ENABLE == can_parameter_init->trans_fifo_order){
            CAN_CTL(can_periph) |= CAN_CTL_TFO;
        }else{
            CAN_CTL(can_periph) &= ~CAN_CTL_TFO;
        }  
        /* disable initialize mode */
        CAN_CTL(can_periph) &= ~CAN_CTL_IWMOD;
        timeout = CAN_TIMEOUT;
        /* wait the ACK */
        while((CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
            timeout--;
        }
        /* check exit initialize mode */
        if(0U != timeout){
            flag = SUCCESS;
        }
    }  
    return flag;
}

/*!
    \brief      initialize CAN filter 
    \param[in]  can_filter_parameter_init: struct for CAN filter initialization
      \arg        filter_list_high: 0x0000 - 0xFFFF
      \arg        filter_list_low: 0x0000 - 0xFFFF
      \arg        filter_mask_high: 0x0000 - 0xFFFF
      \arg        filter_mask_low: 0x0000 - 0xFFFF
      \arg        filter_fifo_number: CAN_FIFO0, CAN_FIFO1 
      \arg        filter_number: 0 - 27
      \arg        filter_mode: CAN_FILTERMODE_MASK, CAN_FILTERMODE_LIST
      \arg        filter_bits: CAN_FILTERBITS_32BIT, CAN_FILTERBITS_16BIT 
      \arg        filter_enable: ENABLE or DISABLE
    \param[out] none
    \retval     none
*/
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init)
{
    uint32_t val = 0U;
    
    val = ((uint32_t)1) << (can_filter_parameter_init->filter_number);
    /* filter lock disable */
    CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
    /* disable filter */
    CAN_FW(CAN0) &= ~(uint32_t)val;
    
    /* filter 16 bits */
    if(CAN_FILTERBITS_16BIT == can_filter_parameter_init->filter_bits){
        /* set filter 16 bits */
        CAN_FSCFG(CAN0) &= ~(uint32_t)val;
        /* first 16 bits list and first 16 bits mask or first 16 bits list and second 16 bits list */
        CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
                                FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS) | \
                                FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
        /* second 16 bits list and second 16 bits mask or third 16 bits list and fourth 16 bits list */
        CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
                                FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) | \
                                FDATA_MASK_LOW((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS);
    }
    /* filter 32 bits */
    if(CAN_FILTERBITS_32BIT == can_filter_parameter_init->filter_bits){
        /* set filter 32 bits */
        CAN_FSCFG(CAN0) |= (uint32_t)val;
        /* 32 bits list or first 32 bits list */
        CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
                                FDATA_MASK_HIGH((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS) |
                                FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
        /* 32 bits mask or second 32 bits list */
        CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
                                FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) |
                                FDATA_MASK_LOW((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS);
    }
    
    /* filter mode */
    if(CAN_FILTERMODE_MASK == can_filter_parameter_init->filter_mode){
        /* mask mode */
        CAN_FMCFG(CAN0) &= ~(uint32_t)val;
    }else{
        /* list mode */
        CAN_FMCFG(CAN0) |= (uint32_t)val;
    }
    
    /* filter FIFO */
    if(CAN_FIFO0 == (can_filter_parameter_init->filter_fifo_number)){
        /* FIFO0 */
        CAN_FAFIFO(CAN0) &= ~(uint32_t)val;
    }else{
        /* FIFO1 */
        CAN_FAFIFO(CAN0) |= (uint32_t)val;
    }
    
    /* filter working */
    if(ENABLE == can_filter_parameter_init->filter_enable){
        
        CAN_FW(CAN0) |= (uint32_t)val;
    }
    
    /* filter lock enable */
    CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}

/*!
    \brief      set CAN1 fliter start bank number
    \param[in]  start_bank: CAN1 start bank number
                only one parameter can be selected which is shown as below:
      \arg        (1..27)
    \param[out] none
    \retval     none
*/
void can1_filter_start_bank(uint8_t start_bank)
{
    /* filter lock disable */
    CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
    /* set CAN1 filter start number */
    CAN_FCTL(CAN0) &= ~(uint32_t)CAN_FCTL_HBC1F;
    CAN_FCTL(CAN0) |= FCTL_HBC1F(start_bank);
    /* filter lock enaable */
    CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}

/*!
    \brief      enable CAN debug freeze
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     none
*/
void can_debug_freeze_enable(uint32_t can_periph)
{
    CAN_CTL(can_periph) |= CAN_CTL_DFZ;
#ifdef GD32F30X_CL
    if(CAN0 == can_periph){
        dbg_periph_enable(DBG_CAN0_HOLD);
    }else{
        dbg_periph_enable(DBG_CAN1_HOLD);
    }
#else
    if(CAN0 == can_periph){
        dbg_periph_enable(DBG_CAN0_HOLD);
    }
#endif
}

/*!
    \brief      disable CAN debug freeze
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     none
*/
void can_debug_freeze_disable(uint32_t can_periph)
{
    CAN_CTL(can_periph) &= ~CAN_CTL_DFZ;
#ifdef GD32F30X_CL
    if(CAN0 == can_periph){
        dbg_periph_disable(DBG_CAN0_HOLD);
    }else{
        dbg_periph_disable(DBG_CAN1_HOLD);
    }
#else
    if(CAN0 == can_periph){
        dbg_periph_enable(DBG_CAN0_HOLD);
    }
#endif
}

/*!
    \brief      enable CAN time trigger mode
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     none
*/
void can_time_trigger_mode_enable(uint32_t can_periph)
{
    uint8_t mailbox_number;
    
    /* enable the tcc mode */
    CAN_CTL(can_periph) |= CAN_CTL_TTC;
    /* enable time stamp */
    for(mailbox_number = 0U; mailbox_number < 3U; mailbox_number++){
        CAN_TMP(can_periph, mailbox_number) |= CAN_TMP_TSEN;
    }
}

/*!
    \brief      disable CAN time trigger mode
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     none
*/
void can_time_trigger_mode_disable(uint32_t can_periph)
{
    uint8_t mailbox_number; 
    
    /* disable the TCC mode */
    CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
    /* reset TSEN bits */
    for(mailbox_number = 0U; mailbox_number < 3U; mailbox_number++){
        CAN_TMP(can_periph, mailbox_number) &= ~CAN_TMP_TSEN;
    }
}

/*!
    \brief       transmit CAN message
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  transmit_message: struct for CAN transmit message
      \arg        tx_sfid: 0x00000000 - 0x000007FF
      \arg        tx_efid: 0x00000000 - 0x1FFFFFFF
      \arg        tx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
      \arg        tx_ft: CAN_FT_DATA, CAN_FT_REMOTE
      \arg        tx_dlen: 0 - 8
      \arg        tx_data[]: 0x00 - 0xFF
    \param[out] none
    \retval     mailbox_number
*/
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message)
{
    uint8_t mailbox_number = CAN_MAILBOX0;

    /* select one empty mailbox */
    if(CAN_TSTAT_TME0 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME0)){
        mailbox_number = CAN_MAILBOX0;
    }else if(CAN_TSTAT_TME1 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME1)){
        mailbox_number = CAN_MAILBOX1;
    }else if(CAN_TSTAT_TME2 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME2)){
        mailbox_number = CAN_MAILBOX2;
    }else{
        mailbox_number = CAN_NOMAILBOX;
    }
    /* return no mailbox empty */
    if(CAN_NOMAILBOX == mailbox_number){
        return CAN_NOMAILBOX;
    }
    
    CAN_TMI(can_periph, mailbox_number) &= CAN_TMI_TEN;
    if(CAN_FF_STANDARD == transmit_message->tx_ff){
        /* set transmit mailbox standard identifier */
        CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_SFID(transmit_message->tx_sfid) | \
                                                transmit_message->tx_ft);
    }else{
        /* set transmit mailbox extended identifier */
        CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_EFID(transmit_message->tx_efid) | \
                                                transmit_message->tx_ff | \
                                                transmit_message->tx_ft);
    }
    /* set the data length */
    CAN_TMP(can_periph, mailbox_number) &= ~CAN_TMP_DLENC;
    CAN_TMP(can_periph, mailbox_number) |= transmit_message->tx_dlen;
    /* set the data */
    CAN_TMDATA0(can_periph, mailbox_number) = TMDATA0_DB3(transmit_message->tx_data[3]) | \
                                              TMDATA0_DB2(transmit_message->tx_data[2]) | \
                                              TMDATA0_DB1(transmit_message->tx_data[1]) | \
                                              TMDATA0_DB0(transmit_message->tx_data[0]);
    CAN_TMDATA1(can_periph, mailbox_number) = TMDATA1_DB7(transmit_message->tx_data[7]) | \
                                              TMDATA1_DB6(transmit_message->tx_data[6]) | \
                                              TMDATA1_DB5(transmit_message->tx_data[5]) | \
                                              TMDATA1_DB4(transmit_message->tx_data[4]);
    /* enable transmission */
    CAN_TMI(can_periph, mailbox_number) |= CAN_TMI_TEN;

    return mailbox_number;
}

/*!
    \brief      get CAN transmit state 
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  mailbox_number
                only one parameter can be selected which is shown as below:
      \arg        CAN_MAILBOX(x=0,1,2)
    \param[out] none
    \retval     can_transmit_state_enum
*/
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number)
{
    can_transmit_state_enum state = CAN_TRANSMIT_FAILED;
    uint32_t val = 0U;
    
    /* check selected mailbox state */    
    switch(mailbox_number){
    /* mailbox0 */
    case CAN_MAILBOX0:
        val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0);
        break;
    /* mailbox1 */
    case CAN_MAILBOX1:
        val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1);
        break;
    /* mailbox2 */
    case CAN_MAILBOX2:
        val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2);
        break;
    default:
        val = CAN_TRANSMIT_FAILED;
        break;
    }
    
    switch(val){
        /* transmit pending */
    case (CAN_STATE_PENDING): 
        state = CAN_TRANSMIT_PENDING;
        break;
        /* mailbox0 transmit succeeded */
    case (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0):
        state = CAN_TRANSMIT_OK;
        break;
        /* mailbox1 transmit succeeded */
    case (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1):
        state = CAN_TRANSMIT_OK;
        break;
        /* mailbox2 transmit succeeded */
    case (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2):
        state = CAN_TRANSMIT_OK;
        break;
        /* transmit failed */
    default: 
        state = CAN_TRANSMIT_FAILED;
        break;
    }
    return state;
}

/*!
    \brief      stop CAN transmission
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  mailbox_number
                only one parameter can be selected which is shown as below:
      \arg        CAN_MAILBOXx(x=0,1,2)
    \param[out] none
    \retval     none
*/
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number)
{
    if(CAN_MAILBOX0 == mailbox_number){
        CAN_TSTAT(can_periph) |= CAN_TSTAT_MST0;
        while(CAN_TSTAT_MST0 == (CAN_TSTAT(can_periph) & CAN_TSTAT_MST0)){
        }
    }else if(CAN_MAILBOX1 == mailbox_number){
        CAN_TSTAT(can_periph) |= CAN_TSTAT_MST1;
        while(CAN_TSTAT_MST1 == (CAN_TSTAT(can_periph) & CAN_TSTAT_MST1)){
        }
    }else if(CAN_MAILBOX2 == mailbox_number){
        CAN_TSTAT(can_periph) |= CAN_TSTAT_MST2;
        while(CAN_TSTAT_MST2 == (CAN_TSTAT(can_periph) & CAN_TSTAT_MST2)){
        }
    }else{
        /* illegal parameters */
    }
}

/*!
    \brief      CAN receive message
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  fifo_number
      \arg        CAN_FIFOx(x=0,1)
    \param[out] receive_message: struct for CAN receive message
      \arg        rx_sfid: 0x00000000 - 0x000007FF
      \arg        rx_efid: 0x00000000 - 0x1FFFFFFF
      \arg        rx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
      \arg        rx_ft: CAN_FT_DATA, CAN_FT_REMOTE
      \arg        rx_dlen: 0 - 8
      \arg        rx_data[]: 0x00 - 0xFF
      \arg        rx_fi: 0 - 27
    \retval     none
*/
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message)
{
    /* get the frame format */
    receive_message->rx_ff = (uint8_t)(CAN_RFIFOMI_FF & CAN_RFIFOMI(can_periph, fifo_number));
    if(CAN_FF_STANDARD == receive_message->rx_ff){
        /* get standard identifier */
        receive_message->rx_sfid = (uint32_t)(GET_RFIFOMI_SFID(CAN_RFIFOMI(can_periph, fifo_number)));
    }else{
        /* get extended identifier */
        receive_message->rx_efid = (uint32_t)(GET_RFIFOMI_EFID(CAN_RFIFOMI(can_periph, fifo_number)));
    }
    
    /* get frame type */
    receive_message->rx_ft = (uint8_t)(CAN_RFIFOMI_FT & CAN_RFIFOMI(can_periph, fifo_number));        
    /* filtering index */
    receive_message->rx_fi = (uint8_t)(GET_RFIFOMP_FI(CAN_RFIFOMP(can_periph, fifo_number)));
    /* get recevie data length */
    receive_message->rx_dlen = (uint8_t)(GET_RFIFOMP_DLENC(CAN_RFIFOMP(can_periph, fifo_number)));
    
    /* receive data */
    receive_message -> rx_data[0] = (uint8_t)(GET_RFIFOMDATA0_DB0(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[1] = (uint8_t)(GET_RFIFOMDATA0_DB1(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[2] = (uint8_t)(GET_RFIFOMDATA0_DB2(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[3] = (uint8_t)(GET_RFIFOMDATA0_DB3(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[4] = (uint8_t)(GET_RFIFOMDATA1_DB4(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[5] = (uint8_t)(GET_RFIFOMDATA1_DB5(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[6] = (uint8_t)(GET_RFIFOMDATA1_DB6(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[7] = (uint8_t)(GET_RFIFOMDATA1_DB7(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    
    /* release FIFO */
    if(CAN_FIFO0 == fifo_number){
        CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
    }else{
        CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
    }
}

/*!
    \brief      release FIFO0
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  fifo_number
                only one parameter can be selected which is shown as below:
      \arg        CAN_FIFOx(x=0,1)
    \param[out] none
    \retval     none
*/
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number)
{
    if(CAN_FIFO0 == fifo_number){
        CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
    }else if(CAN_FIFO1 == fifo_number){
        CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
    }else{
        /* illegal parameters */
        CAN_ERROR_HANDLE("CAN FIFO NUM is invalid \r\n");
    }
}

/*!
    \brief      CAN receive message length
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  fifo_number
                only one parameter can be selected which is shown as below:
      \arg        CAN_FIFOx(x=0,1) 
    \param[out] none
    \retval     message length
*/
uint8_t can_receive_message_length_get(uint32_t can_periph, uint8_t fifo_number)
{
    uint8_t val = 0U;
    
    if(CAN_FIFO0 == fifo_number){
        /* FIFO0 */
        val = (uint8_t)(CAN_RFIFO0(can_periph) & CAN_RFIF_RFL_MASK);
    }else if(CAN_FIFO1 == fifo_number){
        /* FIFO1 */
        val = (uint8_t)(CAN_RFIFO1(can_periph) & CAN_RFIF_RFL_MASK);
    }else{
        /* illegal parameters */
    }
    return val;
}

/*!
    \brief      set CAN working mode
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  can_working_mode
                only one parameter can be selected which is shown as below:
      \arg        CAN_MODE_INITIALIZE
      \arg        CAN_MODE_NORMAL
      \arg        CAN_MODE_SLEEP
    \param[out] none
    \retval     ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode)
{
    ErrStatus flag = ERROR;
    /* timeout for IWS or also for SLPWS bits */
    uint32_t timeout = CAN_TIMEOUT; 
    
    if(CAN_MODE_INITIALIZE == working_mode){
        /* disable sleep mode */
        CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_SLPWMOD);
        /* set initialize mode */
        CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_IWMOD;
        /* wait the acknowledge */
        while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
            timeout--;
        }
        if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
            flag = ERROR;
        }else{
            flag = SUCCESS;
        }
    }else if(CAN_MODE_NORMAL == working_mode){
        /* enter normal mode */
        CAN_CTL(can_periph) &= ~(uint32_t)(CAN_CTL_SLPWMOD | CAN_CTL_IWMOD);
        /* wait the acknowledge */
        while((0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))) && (0U != timeout)){
            timeout--;
        }
        if(0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))){
            flag = ERROR;
        }else{
            flag = SUCCESS;
        }
    }else if(CAN_MODE_SLEEP == working_mode){
        /* disable initialize mode */
        CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_IWMOD);
        /* set sleep mode */
        CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_SLPWMOD;
        /* wait the acknowledge */
        while((CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0U != timeout)){
            timeout--;
        }
        if(CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
            flag = ERROR;
        }else{
            flag = SUCCESS;
        }
    }else{
        flag = ERROR;
    }
    return flag;
}

/*!
    \brief      wake up CAN
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_wakeup(uint32_t can_periph)
{
    ErrStatus flag = ERROR;
    uint32_t timeout = CAN_TIMEOUT;
    
    /* wakeup */
    CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
    
    while((0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0x00U != timeout)){
        timeout--;
    }
    /* check state */
    if(0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
        flag = ERROR;
    }else{
        flag = SUCCESS;
    }
    return flag;
}

/*!
    \brief      get CAN error type
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     can_error_enum
      \arg        CAN_ERROR_NONE: no error
      \arg        CAN_ERROR_FILL: fill error
      \arg        CAN_ERROR_FORMATE: format error
      \arg        CAN_ERROR_ACK: ACK error
      \arg        CAN_ERROR_BITRECESSIVE: bit recessive
      \arg        CAN_ERROR_BITDOMINANTER: bit dominant error
      \arg        CAN_ERROR_CRC: CRC error
      \arg        CAN_ERROR_SOFTWARECFG: software configure
*/
can_error_enum can_error_get(uint32_t can_periph)
{
    can_error_enum error;
    error = CAN_ERROR_NONE;
    
    /* get error type */
    error = (can_error_enum)(GET_ERR_ERRN(CAN_ERR(can_periph)));
    return error;
}

/*!
    \brief      get CAN receive error number
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     error number
*/
uint8_t can_receive_error_number_get(uint32_t can_periph)
{
    uint8_t val;
    
    /* get error count */
    val = (uint8_t)(GET_ERR_RECNT(CAN_ERR(can_periph)));
    return val;
}

/*!
    \brief      get CAN transmit error number
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[out] none
    \retval     error number
*/
uint8_t can_transmit_error_number_get(uint32_t can_periph)
{
    uint8_t val;
    
    val = (uint8_t)(GET_ERR_TECNT(CAN_ERR(can_periph)));
    return val;
}

/*!
    \brief      enable CAN interrupt 
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  interrupt 
                one or more parameters can be selected which are shown as below:
      \arg        CAN_INT_TME: transmit mailbox empty interrupt enable
      \arg        CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
      \arg        CAN_INT_RFF0: receive FIFO0 full interrupt enable
      \arg        CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
      \arg        CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
      \arg        CAN_INT_RFF1: receive FIFO1 full interrupt enable
      \arg        CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
      \arg        CAN_INT_WERR: warning error interrupt enable
      \arg        CAN_INT_PERR: passive error interrupt enable
      \arg        CAN_INT_BO: bus-off interrupt enable
      \arg        CAN_INT_ERRN: error number interrupt enable
      \arg        CAN_INT_ERR: error interrupt enable
      \arg        CAN_INT_WU: wakeup interrupt enable
      \arg        CAN_INT_SLPW: sleep working interrupt enable
    \param[out] none
    \retval     none
*/
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt)
{
    CAN_INTEN(can_periph) |= interrupt;
}

/*!
    \brief      disable CAN interrupt 
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  interrupt
                one or more parameters can be selected which are shown as below:
      \arg        CAN_INT_TME: transmit mailbox empty interrupt enable
      \arg        CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
      \arg        CAN_INT_RFF0: receive FIFO0 full interrupt enable
      \arg        CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
      \arg        CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
      \arg        CAN_INT_RFF1: receive FIFO1 full interrupt enable
      \arg        CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
      \arg        CAN_INT_WERR: warning error interrupt enable
      \arg        CAN_INT_PERR: passive error interrupt enable
      \arg        CAN_INT_BO: bus-off interrupt enable
      \arg        CAN_INT_ERRN: error number interrupt enable
      \arg        CAN_INT_ERR: error interrupt enable
      \arg        CAN_INT_WU: wakeup interrupt enable
      \arg        CAN_INT_SLPW: sleep working interrupt enable
    \param[out] none
    \retval     none
*/
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt)
{
    CAN_INTEN(can_periph) &= ~interrupt;
}

/*!
    \brief      get CAN flag state
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  flag: CAN flags, refer to can_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        CAN_FLAG_RXL: RX level
      \arg        CAN_FLAG_LASTRX: last sample value of RX pin
      \arg        CAN_FLAG_RS: receiving state
      \arg        CAN_FLAG_TS: transmitting state
      \arg        CAN_FLAG_SLPIF: status change flag of entering sleep working mode
      \arg        CAN_FLAG_WUIF: status change flag of wakeup from sleep working mode
      \arg        CAN_FLAG_ERRIF: error flag
      \arg        CAN_FLAG_SLPWS: sleep working state
      \arg        CAN_FLAG_IWS: initial working state
      \arg        CAN_FLAG_TMLS2: transmit mailbox 2 last sending in Tx FIFO
      \arg        CAN_FLAG_TMLS1: transmit mailbox 1 last sending in Tx FIFO
      \arg        CAN_FLAG_TMLS0: transmit mailbox 0 last sending in Tx FIFO
      \arg        CAN_FLAG_TME2: transmit mailbox 2 empty
      \arg        CAN_FLAG_TME1: transmit mailbox 1 empty
      \arg        CAN_FLAG_TME0: transmit mailbox 0 empty
      \arg        CAN_FLAG_MTE2: mailbox 2 transmit error
      \arg        CAN_FLAG_MTE1: mailbox 1 transmit error
      \arg        CAN_FLAG_MTE0: mailbox 0 transmit error
      \arg        CAN_FLAG_MAL2: mailbox 2 arbitration lost
      \arg        CAN_FLAG_MAL1: mailbox 1 arbitration lost
      \arg        CAN_FLAG_MAL0: mailbox 0 arbitration lost
      \arg        CAN_FLAG_MTFNERR2: mailbox 2 transmit finished with no error
      \arg        CAN_FLAG_MTFNERR1: mailbox 1 transmit finished with no error
      \arg        CAN_FLAG_MTFNERR0: mailbox 0 transmit finished with no error
      \arg        CAN_FLAG_MTF2: mailbox 2 transmit finished
      \arg        CAN_FLAG_MTF1: mailbox 1 transmit finished
      \arg        CAN_FLAG_MTF0: mailbox 0 transmit finished
      \arg        CAN_FLAG_RFO0: receive FIFO0 overfull
      \arg        CAN_FLAG_RFF0: receive FIFO0 full
      \arg        CAN_FLAG_RFO1: receive FIFO1 overfull
      \arg        CAN_FLAG_RFF1: receive FIFO1 full
      \arg        CAN_FLAG_BOERR: bus-off error
      \arg        CAN_FLAG_PERR: passive error
      \arg        CAN_FLAG_WERR: warning error
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag)
{  
    /* get flag and interrupt enable state */
    if(RESET != (CAN_REG_VAL(can_periph, flag) & BIT(CAN_BIT_POS(flag)))){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      clear CAN flag state
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  flag: CAN flags, refer to can_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        CAN_FLAG_SLPIF: status change flag of entering sleep working mode
      \arg        CAN_FLAG_WUIF: status change flag of wakeup from sleep working mode
      \arg        CAN_FLAG_ERRIF: error flag
      \arg        CAN_FLAG_MTE2: mailbox 2 transmit error
      \arg        CAN_FLAG_MTE1: mailbox 1 transmit error
      \arg        CAN_FLAG_MTE0: mailbox 0 transmit error
      \arg        CAN_FLAG_MAL2: mailbox 2 arbitration lost
      \arg        CAN_FLAG_MAL1: mailbox 1 arbitration lost
      \arg        CAN_FLAG_MAL0: mailbox 0 arbitration lost
      \arg        CAN_FLAG_MTFNERR2: mailbox 2 transmit finished with no error
      \arg        CAN_FLAG_MTFNERR1: mailbox 1 transmit finished with no error
      \arg        CAN_FLAG_MTFNERR0: mailbox 0 transmit finished with no error
      \arg        CAN_FLAG_MTF2: mailbox 2 transmit finished
      \arg        CAN_FLAG_MTF1: mailbox 1 transmit finished
      \arg        CAN_FLAG_MTF0: mailbox 0 transmit finished
      \arg        CAN_FLAG_RFO0: receive FIFO0 overfull
      \arg        CAN_FLAG_RFF0: receive FIFO0 full
      \arg        CAN_FLAG_RFO1: receive FIFO1 overfull
      \arg        CAN_FLAG_RFF1: receive FIFO1 full
    \param[out] none
    \retval     none
*/
void can_flag_clear(uint32_t can_periph, can_flag_enum flag)
{
    CAN_REG_VAL(can_periph, flag) = BIT(CAN_BIT_POS(flag));
}

/*!
    \brief      get CAN interrupt flag state
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  flag: CAN interrupt flags, refer to can_interrupt_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
      \arg        CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
      \arg        CAN_INT_FLAG_ERRIF: error interrupt flag
      \arg        CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
      \arg        CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
      \arg        CAN_INT_FLAG_RFL0: receive FIFO0 not empty interrupt flag
      \arg        CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
      \arg        CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
      \arg        CAN_INT_FLAG_RFL1: receive FIFO1 not empty interrupt flag
      \arg        CAN_INT_FLAG_ERRN: error number interrupt flag
      \arg        CAN_INT_FLAG_BOERR: bus-off error interrupt flag
      \arg        CAN_INT_FLAG_PERR: passive error interrupt flag
      \arg        CAN_INT_FLAG_WERR: warning error interrupt flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag)
{
    uint32_t ret1 = RESET;
    uint32_t ret2 = RESET;
    
    /* get the staus of interrupt flag */
    if (flag == CAN_INT_FLAG_RFL0) {
        ret1 = can_receive_message_length_get(can_periph, CAN_FIFO0);
    } else if (flag == CAN_INT_FLAG_RFL1) {
        ret1 = can_receive_message_length_get(can_periph, CAN_FIFO1);
    } else if (flag == CAN_INT_FLAG_ERRN) {
        ret1 = can_error_get(can_periph);
    } else {
        ret1 = CAN_REG_VALS(can_periph, flag) & BIT(CAN_BIT_POS0(flag));
    }
    /* get the staus of interrupt enale bit */
    ret2 = CAN_INTEN(can_periph) & BIT(CAN_BIT_POS1(flag));
    if(ret1 && ret2){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      clear CAN interrupt flag state
    \param[in]  can_periph
      \arg        CANx(x=0,1),the CAN1 only for GD32F30X_CL 
    \param[in]  flag: CAN interrupt flags, refer to can_interrupt_flag_enum
                only one parameter can be selected which is shown as below:
      \arg        CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
      \arg        CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
      \arg        CAN_INT_FLAG_ERRIF: error interrupt flag
      \arg        CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
      \arg        CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
      \arg        CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
      \arg        CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
      \arg        CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
    \param[out] none
    \retval     none
*/
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag)
{
    CAN_REG_VALS(can_periph, flag) = BIT(CAN_BIT_POS0(flag));
}