95ce2328
李外
完成USB移植,测试正常,
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
|
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <stdio.h> /* Standard I/O .h-file */
#include <ctype.h> /* Character functions */
#include <string.h> /* String and memory functions */
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "AES.h"
//#include "main.h"
//#include "stm32l4xx_hal.h"
//#include "stm32f10x.h" //要调用CRC硬件时钟使能
//#include "stm32f4xx.h"
//extern uint8_t iKey;
//extern
//uint8_t AesMode;//加密模式
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of rounds in AES Cipher. It is simply initiated to zero. The actual value is recieved in the program.
int Nr=0;
// The number of 32 bit words in the key. It is simply initiated to zero. The actual value is recieved in the program.
int Nk=0;
//Nc: the length of Key(128, 192 or 256) only
#ifdef AES256MODE
int Nc = 256;
#else
int Nc = 128;
#endif
// in - it is the array that holds the CipherText to be decrypted.
// out - it is the array that holds the output of the for decryption.
// state - the array that holds the intermediate results during decryption.
unsigned char in[16], out[32], state[4][4];
// The array that stores the round keys.
unsigned char RoundKey[RoundKeyLEN];
// The Key input to the AES Program
unsigned char Key[32];
#define AES_TEMP_BUFF_LEN 1024
unsigned char iKey;//测试验证用
const uint8_t rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
const uint8_t Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
void KeyExpansion()
{
int i;
unsigned char temp[4],k;
unsigned char middlei=0,middlek=0;
// The first round key is the key itself.
// for(i=0;i<Nk;i++)
// {
// RoundKey[i*4]=Key[i*4];
// RoundKey[i*4+1]=Key[i*4+1];
// RoundKey[i*4+2]=Key[i*4+2];
// RoundKey[i*4+3]=Key[i*4+3];
// }
memcpy(RoundKey,Key,(Nk<<2));
i=Nk;
// All other round keys are found from the previous round keys.
while (i < (Nb * (Nr+1)))
{
memcpy(temp,(RoundKey+(i-1)*4),4);
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
{
k = *temp;
*temp = *(temp+1);
*(temp+1) = *(temp+2);
*(temp+2) = *(temp+3);
*(temp+3) = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
{
// temp[0]=getSBoxValue(temp[0]);
// temp[1]=getSBoxValue(temp[1]);
// temp[2]=getSBoxValue(temp[2]);
// temp[3]=getSBoxValue(temp[3]);
*temp=*(sbox+(*temp));
*(temp+1)=*(sbox+(*(temp+1)));
*(temp+2)=*(sbox+(*(temp+2)));
*(temp+3)=*(sbox+(*(temp+3)));
}
temp[0] = temp[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
{
temp[0]=getSBoxValue(temp[0]);
temp[1]=getSBoxValue(temp[1]);
temp[2]=getSBoxValue(temp[2]);
temp[3]=getSBoxValue(temp[3]);
}
}
middlei=i<<2;
middlek=(i-Nk)<<2;
*(RoundKey+middlei) = (*(RoundKey+middlek)) ^ (*temp);
*(RoundKey+middlei+1) = (*(RoundKey+middlek+1)) ^ (*(temp+1));
*(RoundKey+middlei+2) = (*(RoundKey+middlek+2)) ^ (*(temp+2));
*(RoundKey+middlei+3) = (*(RoundKey+middlek+3)) ^ (*(temp+3));
i++;
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round)
{
int i,j,k;
k = round <<4;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
*(*(state+j)+i) ^= *(RoundKey+k + (i<<2) + j);
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void InvSubBytes()
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
*(*(state+i)+j) = *(rsbox+*(*(state+i)+j));
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void InvShiftRows()
{
unsigned char temp;
temp=*(*(state+1)+3);
*(*(state+1)+3)=*(*(state+1)+2);
*(*(state+1)+2)=*(*(state+1)+1);
*(*(state+1)+1)=*(*(state+1));
*(*(state+1))=temp;
// Rotate second row 2 columns to right
temp=*(*(state+2));
*(*(state+2))=*(*(state+2)+2);
*(*(state+2)+2)=temp;
temp=*(*(state+2)+1);
*(*(state+2)+1)=*(*(state+2)+3);
*(*(state+2)+3)=temp;
// Rotate third row 3 columns to right
temp=*(*(state+3));
state[3][0]=*(*(state+3)+1);
*(*(state+3)+1)=*(*(state+3)+2);
*(*(state+3)+2)=*(*(state+3)+3);
*(*(state+3)+3)=temp;
}
typedef struct{
unsigned char a:7;
unsigned char b:1;
}bits;
union{
bits bit;
unsigned char bytes;
}asBytes;
// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))
#define xtime1(x) (x<<1)
#define xtime2(x) ((x<<1) ^0x1b)
// Multiplty is a macro used to multiply numbers in the field GF(2^8)
//#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
void InvMixColumns()
{
int i,j;
unsigned char at[4],bt[4],ct[4],dt[4];
unsigned char at23,at03,bt23,bt03,ct23,ct03,dt23,dt03;
for(i=0;i<4;i++)
{
*at = *(*state + i);
*bt = *(*(state+1) + i);
*ct = *(*(state+2) + i);
*dt = *(*(state+3) + i);
for(j=1;j<4;j++)
{
*(at+j)=xtime(*(at+j-1));
*(bt+j)=xtime(*(bt+j-1));
*(ct+j)=xtime(*(ct+j-1));
*(dt+j)=xtime(*(dt+j-1));
}
at23= at[2]^at[3];
at03= at[0]^at[3];
bt23= bt[2]^bt[3];
bt03= bt[0]^bt[3];
ct23= ct[2]^ct[3];
ct03= ct[0]^ct[3];
dt23= dt[2]^dt[3];
dt03= dt[0]^dt[3];
*(*(state) + i) = at[1]^at23 ^bt03^bt[1] ^ct[0]^ct23 ^dt03;
*(*(state+1) + i) = at03 ^bt[1]^bt23 ^ct03^ct[1] ^dt[0]^dt23;
*(*(state+2) + i) = at[0]^at23 ^bt03 ^ct[1]^ct23 ^dt03^dt[1];
*(*(state+3) + i) = at03^at[1] ^bt[0]^bt23 ^ct03^dt[1] ^dt23;
}
}
// InvCipher is the main function that decrypts the CipherText.
void InvCipher()
{
int i,j,round=0;
//Copy the input CipherText to state array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
*(*(state+j)+i) = in[(i<<2) + j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns(); //这段代码太耗时间
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
// The decryption process is over.
// Copy the state array to output array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
*(out+(i<<2)+j)=*(*(state+j)+i);
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void SubBytes()
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[i][j] = sbox[state[i][j]];
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void ShiftRows()
{
unsigned char temp;
// Rotate first row 1 columns to left
temp=state[1][0];
state[1][0]=state[1][1];
state[1][1]=state[1][2];
state[1][2]=state[1][3];
state[1][3]=temp;
// Rotate second row 2 columns to left
temp=state[2][0];
state[2][0]=state[2][2];
state[2][2]=temp;
temp=state[2][1];
state[2][1]=state[2][3];
state[2][3]=temp;
// Rotate third row 3 columns to left
temp=state[3][0];
state[3][0]=state[3][3];
state[3][3]=state[3][2];
state[3][2]=state[3][1];
state[3][1]=temp;
}
// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))
// MixColumns function mixes the columns of the state matrix
void MixColumns()
{
int i;
unsigned char Tmp,Tm,t;
for(i=0;i<4;i++)
{
t=state[0][i];
Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;
Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;
Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;
Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;
Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;
}
}
// Cipher is the main function that encrypts the PlainText.
void Cipher()
{
int i,j,round=0;
//Copy the input PlainText to state array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i] = in[(i<<2) + j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=1;round<Nr;round++)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
// The encryption process is over.
// Copy the state array to output array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
out[(i<<2)+j]=state[j][i];
}
}
}
char *encrypt(char *str, char *key)
{
int j,k;
char *newstr;
Nk = Nc / 32;
Nr = Nk + 6;
k = Nk<<2;
newstr = (char *)malloc(16);
memset(newstr,0,16);
for(j=0;j<k;j++)
{
Key[j]=key[j];
}
for(j=0;j<16;j++)
{
in[j]=str[j];
}
KeyExpansion();
Cipher();
memcpy(newstr, out, 16);
//strcat(newstr,out);
return newstr;
}
char *decrypt(char *str, char *key , int len)
{
int j;
char *newstr;
Nk = Nc / 32;
Nr = Nk + 6;
newstr = (char *)malloc(16);
memset(newstr,0,16);
for(j=0;j<(Nk<<2);j++)
{
*(Key+j)=*(key+j);
}
for(j=0;j<16;j++)
{
*(in+j)=*(str+j);
}
KeyExpansion();
InvCipher();
memcpy(newstr, out, 16);
return newstr;
}
//////////////////////////////////////////////////////////////////////////////////////////
//Base64 ??
int Base64Encode( char *OrgString, char *Base64String, int OrgStringLen )
{
// OrgString ????????
// Base64String ???????????
// OrgStringLen ????????
static char Base64Encode[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int Base64StringLen = 0;
while( OrgStringLen > 0 )
{
*Base64String ++ = Base64Encode[(OrgString[0] >> 2 ) & 0x3f];
if( OrgStringLen > 2 )
{
*Base64String ++ = Base64Encode[((OrgString[0] & 3) << 4) | (OrgString[1] >> 4)];
*Base64String ++ = Base64Encode[((OrgString[1] & 0xF) << 2) | (OrgString[2] >> 6)];
*Base64String ++ = Base64Encode[OrgString[2] & 0x3F];
}
else
{
switch( OrgStringLen )
{
case 1:
*Base64String ++ = Base64Encode[(OrgString[0] & 3) << 4 ];
*Base64String ++ = '=';
*Base64String ++ = '=';
break;
case 2:
*Base64String ++ = Base64Encode[((OrgString[0] & 3) << 4) | (OrgString[1] >> 4)];
*Base64String ++ = Base64Encode[((OrgString[1] & 0x0F) << 2) | (OrgString[2] >> 6)];
*Base64String ++ = '=';
break;
}
}
OrgString +=3;
OrgStringLen -=3;
Base64StringLen +=4;
}
*Base64String = 0;
return Base64StringLen;
}
//////////////////////////////////////////////////////////////////////////////////////////
//Base64 ??
char GetBase64Value(char ch) //?????
{
if ((ch >= 'A') && (ch <= 'Z')) // A ~ Z
return ch - 'A';
if ((ch >= 'a') && (ch <= 'z')) // a ~ z
return ch - 'a' + 26;
if ((ch >= '0') && (ch <= '9')) // 0 ~ 9
return ch - '0' + 52;
switch (ch) // ????
{
case '+':
return 62;
case '/':
return 63;
case '=': //Base64 ????
return 0;
default:
return 0;
}
}
// ????
int Base64Decode( char *OrgString, char *Base64String, int Base64StringLen, bool bForceDecode ) //????
{
// OrgString ???????????
// Base64String ????????
// Base64StringLen ????????
// bForceDecode ????????????,??????
// true ????
// false ?????
unsigned char Base64Encode[4];
unsigned char denghaoNum = 0;
unsigned char i;
int OrgStringLen=0;
if( Base64StringLen % 4 && !bForceDecode ) //???? 4 ???,? Base64 ?????
{
OrgString[0] = '\0';
return -1;
}
for (i=Base64StringLen-1; i>0; i--)
{
if (Base64String[i] == '=')
denghaoNum++;
else
break;
}
while( Base64StringLen > 2 )
{
Base64Encode[0] = GetBase64Value(Base64String[0]);
Base64Encode[1] = GetBase64Value(Base64String[1]);
Base64Encode[2] = GetBase64Value(Base64String[2]);
Base64Encode[3] = GetBase64Value(Base64String[3]);
*OrgString ++ = (Base64Encode[0] << 2) | (Base64Encode[1] >> 4);
*OrgString ++ = (Base64Encode[1] << 4) | (Base64Encode[2] >> 2);
*OrgString ++ = (Base64Encode[2] << 6) | (Base64Encode[3]);
Base64String += 4;
Base64StringLen -= 4;
OrgStringLen += 3;
}
return OrgStringLen-denghaoNum;
}
//####以上是纯软件加密实现底层,以下是软件加密接口层#######################
void AES_Encrypt(char* pExpressText , char* pCipherText , char* pAeskey,unsigned char _256_mode)
{
char* str=NULL;
if (_256_mode==0) Nc=128;else Nc=256;//软件是AES128还是256
//pExpressText:待加密的明文数据,pkey:加密密钥 str:加密后的数据
str = encrypt(pExpressText, pAeskey); //aesTempBuff[AES_TEMP_BUFF_LEN]
//memcpy(pCipherText,str,strlen(str));//不能用strlen,否则有数据0就错了
memcpy(pCipherText,str,16);
//str:待编码的数据 pCipherText:编码后的数据 aesDataLen:待编码的长度
// Base64Encode(str, pCipherText,aesDataLen);//编码长度有变化 故这里不需要
free(str);
}
void AES_Decrypt(char* pExpressText , char* pCipherText , char* pAeskey,unsigned char _256_mode)
{
char* str2;
if (_256_mode==0) Nc=128;else Nc=256;
//send_buff:待解密的数据 ,pkey:密钥 str2:解密后的数据
str2 = decrypt(pCipherText, pAeskey , 16);
memcpy(pExpressText,str2,16);
free(str2);
}
//#######STM官方演示函数接口################################
//注意:要打开硬件CRC效验时钟,库使用了硬件CRC
#define __CRC_CLK_ENABLE() RCC->AHBENR |= (RCC_AHBENR_CRCEN)
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
* @brief AES ECB Encryption example.
* @param InputMessage: pointer to input message to be encrypted.
* @param InputMessageLength: input data message length in byte.
* @param AES128_Key: pointer to the AES key to be used in the operation
* @param OutputMessage: pointer to output parameter that will handle the encrypted message
* @param OutputMessageLength: pointer to encrypted message length.
* @retval error status: can be AES_SUCCESS if success or one of
* AES_ERR_BAD_INPUT_SIZE, AES_ERR_BAD_OPERATION, AES_ERR_BAD_CONTEXT
* AES_ERR_BAD_PARAMETER if error occured.
*/
int32_t STM32_AES_ECB_Encrypt(uint8_t* InputMessage,
uint32_t InputMessageLength,
uint8_t *AES256_Key,
uint8_t *OutputMessage,
uint32_t *OutputMessageLength,unsigned char _256_mode)
{
AESECBctx_stt AESctx;
uint32_t error_status = AES_SUCCESS;
int32_t outputLength = 0;
/* Set flag field to default value */
AESctx.mFlags = E_SK_DEFAULT;
#ifndef AES256EN
/* Set key size to 32 (corresponding to AES-256) */
AESctx.mKeySize = 16;//AES128使用16字节
#else
if (_256_mode==0)//加密模式
AESctx.mKeySize = 16;//AES128使用16字节
else
AESctx.mKeySize = 32;
#endif
/* Initialize the operation, by passing the key.
* Third parameter is NULL because ECB doesn't use any IV */
error_status = AES_ECB_Encrypt_Init(&AESctx, AES256_Key, NULL );
/* check for initialization errors */
if (error_status == AES_SUCCESS)
{
/* Encrypt Data */
error_status = AES_ECB_Encrypt_Append(&AESctx,
InputMessage,
InputMessageLength,
OutputMessage,
&outputLength);
if (error_status == AES_SUCCESS)
{
/* Write the number of data written*/
*OutputMessageLength = outputLength;
/* Do the Finalization */
error_status = AES_ECB_Encrypt_Finish(&AESctx, OutputMessage + *OutputMessageLength, &outputLength);
/* Add data written to the information to be returned */
*OutputMessageLength += outputLength;
}
}
return error_status;
}
/**
* @brief AES ECB Decryption example.
* @param InputMessage: pointer to input message to be decrypted.
* @param InputMessageLength: input data message length in byte.
* @param AES128_Key: pointer to the AES key to be used in the operation
* @param OutputMessage: pointer to output parameter that will handle the decrypted message
* @param OutputMessageLength: pointer to decrypted message length.
* @retval error status: can be AES_SUCCESS if success or one of
* AES_ERR_BAD_INPUT_SIZE, AES_ERR_BAD_OPERATION, AES_ERR_BAD_CONTEXT
* AES_ERR_BAD_PARAMETER if error occured.
*/
int32_t STM32_AES_ECB_Decrypt(uint8_t* InputMessage,
uint32_t InputMessageLength,
uint8_t *AES256_Key,
uint8_t *OutputMessage,
uint32_t *OutputMessageLength,unsigned char _256_mode)
{
AESECBctx_stt AESctx;
uint32_t error_status = AES_SUCCESS;
int32_t outputLength = 0;
/* Set flag field to default value */
AESctx.mFlags = E_SK_DEFAULT;
#ifndef AES256EN
/* Set key size to 32 (corresponding to AES-256) */
AESctx.mKeySize = 16;//AES128使用16字节
#else
if (_256_mode==0)//加密模式
AESctx.mKeySize = 16;//AES128使用16字节
else
AESctx.mKeySize = 32;
#endif
/* Initialize the operation, by passing the key.
* Third parameter is NULL because ECB doesn't use any IV */
error_status = AES_ECB_Decrypt_Init(&AESctx, AES256_Key, NULL );
/* check for initialization errors */
if (error_status == AES_SUCCESS)
{
/* Decrypt Data */
error_status = AES_ECB_Decrypt_Append(&AESctx,
InputMessage,
InputMessageLength,
OutputMessage,
&outputLength);
if (error_status == AES_SUCCESS)
{
/* Write the number of data written*/
*OutputMessageLength = outputLength;
/* Do the Finalization */
error_status = AES_ECB_Decrypt_Finish(&AESctx, OutputMessage + *OutputMessageLength, &outputLength);
/* Add data written to the information to be returned */
*OutputMessageLength += outputLength;
}
}
return error_status;
}
uint8_t Buffercmp(const uint8_t* pBuffer, uint8_t* pBuffer1, uint16_t BufferLength)
{
while (BufferLength--)
{
if (*pBuffer != *pBuffer1)
{
return 1;
}
pBuffer++;
pBuffer1++;
}
return 0;
}
////###########################################################################
////测试函数--纯软和库函数比较
//void AES_Test(void)
//{
// uint8_t i,sText[16],sDec[16],sDec1[16],sKey[16],sCode[16],sCode1[16];
// uint32_t iLen;
// volatile uint8_t bOk;
//
// //__CRC_CLK_ENABLE();//打开硬件CRC时钟,软件库加解密才正确
//
// for (i=0;i<16;i++)
// { sKey[i]=i+iKey;
// sText[i]=i+iKey+'A';
// }
// sKey[7]=0;sText[12]=0;//加0数据
// iKey++; //外部变化--测试不同数据
//
// //AES_Encrypt(sText,sCode,sKey);
// //AES_Decrypt(sDec,sCode,sKey);
// STM32_AES_ECB_Encrypt(sText,16,sKey,sCode1,&iLen);
// STM32_AES_ECB_Decrypt(sCode1,16,sKey,sDec1,&iLen);
//
// /*bOk=0;
// bOk= bOk+Buffercmp(sText,sDec,16);//一样返回0
// bOk= bOk+Buffercmp(sText,sDec1,16);//解密后数据正确
// bOk= bOk+Buffercmp(sCode,sCode1,16);//加密后数据一致
// if (bOk)
// { bOk=100;
// }*/
//
//}
|